Category Archives: Sun

Timelapse of the Total Solar Eclipse

Last week I shared some of the images I obtained during the Total Solar Eclipse on 13 / 14 November 2012. It was observed from the Mulligan Highway, 44 km south of Lakeland, Queensland Australia. After spending a weekend playing with the raw frames, I ended up with this timelapse video, which shows all the sequence of the eclipse.

Timelapse video of the Total Solar Eclipse on 13 / 14 Nov 2012. The direct link to YouTube is here. Credit: Ángel R. López-Sánchez (Australian Astronomical Observatory / Macquarie University, Agrupación Astronómica de Córdoba / Red Andaluza de Astronomía).

The video combines 1203 individual frames obtained while the eclipse was happening. As before, I used my refractor Skywatcher telescope, 80 mm aperture and 600 mm focal, and my digital camera CANON EOS 600D at primary focus. For all partial phases but the totality I used a solar filter which blocks the 99.9997% of the incident light. The approximate field of view of the video is 2ºx1º. I usually took a frame each 6 seconds, but sometimes I triggered many consecutive images to improve the quality of the final photo of that moment. The music is the theme “WorldBuilder” written by Fran Solo and included in Epic Soul Factory Xpansion Edition.

Total Solar Eclipse 13 / 14 Nov 2012

After many years waiting for it, I have finally observed (and enjoyed!) my very first Total Solar Eclipse. It was on 14 November 2012 (still 13 November following time in UT) and I was 45 km south of Lakeland, Queensland Australia (I had to drive during the night trying to escape from the clouds in the coast near Port Douglas). Here you have some of the images I have obtained of this rare phenomenon.

My sequence of the Total Solar Eclipse on 13 / 14 November 2012, 50 km south from Lakeland, Queensland, Australia. I used a Skywatcher D 80mm, F 600mm, primary focus using CANON EOS 600D. All times given in UT and correspond to 13 Nov 2012. Credit: Ángel R. López-Sánchez (Australian Astronomical Observatory / Macquarie University, Agrupación Astronómica de Córdoba / Red Andaluza de Astronomía).

Some more pictures:

The sun rises, but the eclipse did already start. Credit: Ángel R. López-Sánchez (Australian Astronomical Observatory / Macquarie University, Agrupación Astronómica de Córdoba / Red Andaluza de Astronomía).

Image of the totality showing the brightest areas of the solar corona and some solar prominences close to the lunar limb (in red). Credit: Ángel R. López-Sánchez (Australian Astronomical Observatory / Macquarie University, Agrupación Astronómica de Córdoba / Red Andaluza de Astronomía).

Image of the totality showing the diffuse solar corona, but the brightest areas are overexposed. Credit: Ángel R. López-Sánchez (Australian Astronomical Observatory / Macquarie University, Agrupación Astronómica de Córdoba / Red Andaluza de Astronomía).

Diamond ring, the first light of the Sun coming after the totality. Credit: Ángel R. López-Sánchez (Australian Astronomical Observatory / Macquarie University, Agrupación Astronómica de Córdoba / Red Andaluza de Astronomía).

HDR (High Dynamic Range) image combining 20 individual frames with different exposition times. Credit: Ángel R. López-Sánchez (Australian Astronomical Observatory / Macquarie University, Agrupación Astronómica de Córdoba / Red Andaluza de Astronomía).

What are Wolf-Rayet stars?

Wolf-Rayet (WR) stars are the evolved descents of the most massive, extremely hot (temperatures up to 200,000 K) and very luminous (105  to 106 solar luminosities, L) O stars, with masses 25 – 30 solar masses (M) for solar metallicity. WR stars possess very strong stellar winds, which reach velocities up to 3,000 km/s. These winds are observed in the broad emission line profiles (sometimes, even P-Cygni profiles) of WR spectra in the optical and UV ranges. These strong winds are also attributed to atmospheres in expansion. Actually, these winds are so strong that they are peeling the star and converting it in a nude nucleus without envelope. Indeed, WR stars have ejected their unprocessed outer Hydrogen-rich layers. WR stars typically lose 10−5 M a year; in comparison the Sun only loses  10−14  M⊙  per year.

Hα image of the Population I Wolf-Rayet star WR 124 (WN8) showing a young circunstelar envelope that is ejected at velocities highest than 300 km/s. The chaotic and filamentary structure created forms the M 1-67 nebula. The star is located at about 4.6 kpc from the Sun. At the left, image obtained by the author using the IAC-80 telescope, combining filters Hα (red) Hα continuum (green) and [O III] (blue). The right Hα image was obtained by the Hubble Space Telescope WFPC2 (Grosdidier et al. 1998). Note that the large arcs of nebulosity extend around the central star yet with not overall global shell structure. Furthermore, numerous bright knots of emission occur in the inner part of the nebula, often surrounded by what appear to be their own local wind diffuse bubbles. The dashed square in the IAC-80 image indicates the size of the HST image.

This is Figure 2.1 in my PhD Thesis.

WR stars were discovered by French astronomers Charles Wolf and Georges Rayet in 1867. They found that three bright galactic stars located at Cygnus region have, rather than absorptions lines, broad strong emission bands superposed to the typical continuum of hot stars. In 1930 C.S Beals correctly identified these features as emission lines produced by high ionized elements as helium, carbon, nitrogen and oxygen.  The intriguing spectral appearance of WR stars is due both their strong stellar winds and highly evolved surface chemical abundance. In 1938, WR stars were subdivided into WN (nitrogen-rich) and WC (carbon-rich) depending on whether the spectrum was dominated by lines of nitrogen or carbon-oxygen , respectively. Not until the 1980s did it became clear that WR stars represent an evolutionary phase in the lives of massive stars during which they undergo heavy mass loss. 

The mass-loss occurs via a continuous stellar wind which accelerated from low velocities near the surface of the star to velocities that exceed the surface escape speed. Their spectra, originated over a range of radii with the optical continuum forming close the stellar core and the emission lines in the more external areas (even beyond 10 stellar radii), indicate that the WR stars are embedded in luminous and turbulent shells of ejecta owing outwards at speeds comparable to the expansion velocities of novae although, in the case of WR stars, the expanding shell is being constantly fed with material from the main body of the star.

WR stars are extremely rare, reflecting their short lifespan. Indeed, they live for only some few hundred of thousands years, and hence only few WR stars are known: about 500 in our Milky Way and 100 in the Large Magellanic Cloud. Indeed, because of their peculiarities (brightness and broad emission lines), WR stars can be detected in distant galaxies. A galaxy showing features of WR stars in its spectrum is known as a Wolf-Rayet galaxy.

I compiled the main characteristics of WR stars in Chapter 2 of my PhD Thesis. A recent review about the properties of WR stars was presented by Crowther (2007).