Category Archives: Spiral Galaxies

Astrophotography from Sydney

Article originally written for the AAO’s Newsletter published on 29th June 2021.

During the last year I’ve been setting up my telescope in the backyard to do astrophotography as an amateur astronomer. This has been possible thanks to getting a good mount (Skywatcher AZ-EQ6-Pro) that allows me to do auto-guiding, and using a little but very clever device (it’s a modified Raspberri Pi manufactured by ZWO called “ASIAir”) that allows me to connect mount and cameras (the main camera for astrophotography and the auxiliary camera for auto-guiding) together, being everything controlled using my son’s iPad (who, with only 8 years, has been also helping me with all of this). In the last months I’ve been able to get a process so smooth that I only need 10 minutes for setup (checking polar alignment, guiding, focus) and then the telescope is observing all the night (it will automatically move to a parked position at the end of the run).

My amateur telescope equipment in April 2021
My amateur telescope equipment in the backyard (15 km from Sydney’s centre) ready for astrophotography in April 2021. The telescope is my Skywatcher Black Diamond 80, f=600mm (f/7.5) that I bought for the Transit of Venus 2012. The x0.8 Orion focal reducer is included here. I use the ZWO ASIAir to control the main camera, the mount (Skywatcher AZ-EQ6 Pro) and the guiding system (ASI120MM + Orion 50mm finderscope). The ZWO Filter Wheel has 7 positions with 2” filters (ZWO LBGR filters, Baader 3.5nn H-alpha, Antlia 3nm [O III], and a hand-made dark filter). The main camera is a ZWO 1600MM-Pro, usually set at -20C.

I must confess this has been a lot of fun for me, also for keeping extra busy and awake during the many meetings / workshops in the middle of the night we all are having lately. I’m getting some nice photos, particularly of nebulae, as I’m using some ultra-narrow (3.5nm thickness) H-alpha and [O III] filters. One of my favourite images is the Cat’s Paw nebula, who would have told me just some few years ago I will be able to get such an image with all these details using a 80mm refractor telescope in Sydney!

Fire in the Cat's Paw Nebula
Deep H-alpha image of the Cat’s Paw Nebula (NGC 6334) in Scorpius obtained from my backyard, 15 km from Sydney’s city centre. All the information in my Flickr. Credit: Ángel R. López-Sánchez (AAO-MQ).

Hence, when last May, I was starting to use TAIPAN and observing with this new instrument, I couldn’t help myself…

While Tayyaba and Anthony helped me to get trained for TAIPAN observing, I decided to check if the instrument could be used for observing HII regions in the outskirts of the nearby spiral galaxy M 83, as well as observing the dwarf galaxies in the neighbourhood. Unfortunately this has been hard for the 1.2m UKST because of the faintness of the targets, but at least I got some test data from the central parts of M83 and some dwarf galaxies, including beautiful starburst NGC 5253. 

However, I was thrilled to be using TAIPAN to observe M83 while, at the same time, in my backyard, my small telescope was also observing M 83 to get a new color-image of this galaxy. It was quite exciting and rewarding!

Colour image of M83  and surroundings combining data in B, G, R and Luminosity filters (8 hours in total combining 2 minute exposures). Data taken on 16 and 17 May 2021 while observing with TAIPAN remotely from my home office. This is still work in progress. Credit: Ángel R. López-Sánchez (AAO-MQ).

This image is still work in process, because we need to take usually hundreds of frames in each filter to get a good astronomical image to mitigate the light pollution plus reducing the background noise as much as we can. And, of course, dealing later with the processing of the data (it’s not that hard as it sounds, there is actually some software already available for amateur astronomers that does this very quickly in a very efficient way, even considering darks, flats, offsets and median stacking with different options). Also, I still need to add the H-alpha data in this image to emphasise the star-forming regions in the spiral disk of M 83. Unfortunately, the weather over Sydney during the last weeks has not being very good for astrophotography, but I hope to get the rest of the data soon.

Additionally, on Wednesday 26th May we enjoyed a total lunar eclipse. I took almost 2000 images of the event while I was participating in an online live event with many schools in Spain (8000+ views during the day). The telescope setup in this case was different, as I used my CANON 5D Mark III DSLR as main camera attached to my telescope. But, even though the totality of this lunar eclipse was short (only around 15 minutes), I got a very nice image of the eclipsed moon. For this image I combined the same data independently for getting the stars and the moon, and merged them together later.

Total Lunar Eclipse - 26 May 2021
Total Lunar Eclipse on 26th May 2021. This image combines 50 x 1″ exposures, ISO 800, obtained with my CANON 5D Mark III attached at primary focus of my Skywatcher Black Diamond 80mm f600mm (F/7.5) during the Total Lunar Eclipse on Wednesday 26 May 2021, between 9:00pm and 9:04pm, Sydney local time. Full description and high resolution image here. Credit: Ángel R. López-Sánchez (AAO-MQ).

Image

Multiwavelength image of the spiral galaxy M 101

Multiwavelength image of nearby spiral galaxy M 101 combining ultraviolet (light blue), optical (green), near infrared (yellow), H-alpha and 8 microns mid-infrared (red) and 21 cm HI emission (dark blue). Each colour prepresents an important component of the galaxy: massive stars (light blue), stars (green and yellow), star-forming gas and dust (red) and neutral hydrogen (dark blue)

Compare with the Astronomical Picture of the Day on 13 July 2012 apod.nasa.gov/apod/ap120713.html

Data credit: UV data (GALEX): Gil de Paz et al. 2007, ApJS, 173, 185; R and Hα data (KPNO): Hoopes et al. 2001, ApJ, 559, 878; Near-Infrared data (2MASS): Jarrett et al. 2003, AJ, 125, 525, 8 microns data (Spitzer): Dale et al. 2009, ApJ, 703, 517; 21cm HI data (VLA): Walter et al. 2008, AJ, 136, 2563, ”The H I Nearby Galaxy Survey”.

Credit of the composition: Ángel R. López-Sánchez (AAO/MQ).

More sizes and high resolution image in My Flickr.

Podcast in FBI radio: The Milky Way is missing

Some few months ago I was interviewed by Zacha Rosen in the FBi’s Not What You Think radio show. I was talking about what a galaxy is, the feeling of seeing the center of the Milky Way close to the zenith for the first time, and the problem of the light pollution.

Radio interview in FBI Sydney

The show was broadcasted on FBI 94.5 FM at 10:30am Saturday October 22nd, Sydney time. It is also available as podcast from the Not What You Think webpage or using iTunes.

You can also listen to the 18 minutes interview here:

 

Thanks Zacha for this wonderful experience I hope to repeat in the future!

Video of the “Story of Light” in Vivid Sydney 2016

Following the success of our sold-out Event “The Story of Light – The Astronomer’s Perspective” for ViVID Sydney Ideas 2015, the Australian Astronomical Observatory (AAO) continued its collaboration with ViVID Sydney 2016 organizing “The Story of Light – Deciphering the data encoded on the cosmic light”. But actually it was me who was in charge of the organization.

The five astronomers speaking during our “Sydney Vivid Ideas: The Story of Light” started at the Powerhouse Museum, Sydney, 29th May 2016. From left to right: Luke Barnes, Alan Duffy, Vanessa Moss, Liz Mannering and Ángel López-Sánchez. Photo credit: Jenny Ghabache (AAO).

The event was held at the PowerHouse Museum in Sydney on Sunday 29th May 2016. More than 160 people attended this special event. Five young astronomers (me included) talked about Astronomy and Big Data: the light and light-based technologies developed in Australian astronomy for both optical and radio telescopes; the tools, platforms, and techniques used for data analysis and visualization; how astronomers create simulation data; how some of these techniques are being used in other research areas; and the major scientific contributions toward our understanding of the Universe. Indeed, astronomers have been pioneers in developing “Data Science” techniques to make sense of this huge data deluge, many of which are now used in other areas.

We recorded all the event in video, and it is now publicly available  in the AAO YouTube channel. Some photos of the event are also compiled below. I want to thank AAO/ITSO Research Astronomer Caroline Foster for helping recording and editing the video and Jenny Ghabache (AAO) for taking the photos of the event.

Full recording of the event “The Story of Light 2016: Deciphering the data encoded on the cosmic light” organised by the AAO for Vivid Sydney Ideas 2016. Credit: AAO. Acknowledgment: Caroline Foster (AAO).

The event was hosted by Alan Duffy (Swinburne University). I was in charge of explaining optical astronomy, the AAO, optical surveys and big data. Then my colleagues  Vanessa Moss (Univ of Sydney/CAASTRO), Luke Barnes (Univ. of Sydney) and Liz Mannering (AAO/ICRAR) discussed radio astronomy, the ASKAP and big data (Vanessa), simulating, analysing and visualizing astronomy data (Luke) and astronomy data archive, the All-Sky Virtual Observatory (ASVO) and other virtual observatories (Liz ). After the short 12-15 minutes talks (well, as usual I took a bit more time), the panel welcomed questions from the audience (and even from Twitter using #SoLSydneyIdeas) for a discussion session about Light and Astronomy and the Australian contribution to the improvement of our understanding of the Universe.

The Lecture Theatre a few minutes before our “Sydney Vivid Ideas: The Story of Light” started at the Powerhouse Museum, Sydney, 29th May 2016. Photo credit: Jenny Ghabache (AAO).

Our host, Alan Duffy, introducing the event. Photo credit: Jenny Ghabache (AAO).

AAO/MQU Research Astronomer Ángel R. López-Sánchez talking about optical astronomy, the AAO and big data. Photo credit: Jenny Ghabache (AAO).

Vanessa Moss (Univ. of Sydney/CAASTRO) talking about radioastronomy, the ASKAP and big data. Photo credit: Jenny Ghabache (AAO).

Luke Barnes (Univ. of Sydney) talking about simulating, analysing and visualizing astronomy data. Photo credit: Jenny Ghabache (AAO).

Liz Mannering (Univ. of Sydney) discussed astronomy data archive, the All-Sky Virtual Observatory (ASVO) and other virtual observatories. Photo credit: Jenny Ghabache (AAO).

Panel discussion with all participants answering questions from the audience. Photo credit: Jenny Ghabache (AAO).

Angel Lopez-Sanchez answering a question from the audience. Photo credit: Jenny Ghabache (AAO).

And last… Well, if you want to see only my talk, here it is:

Spiral galaxy NGC 4027 with AAT: an outreach exercise

During this week I’m curator of the @astrotweep, a Twitter account that each week features an astronomer or planetary scientist taking about their research, science and life. I’m having a lot of fun with it, although I have to recognize it is extra work.

I chose to do it this week because there are some few things happening. In particular, I’m supporting observations at the Anglo-Australian Telescope (Siding Spring Observatory, NSW, Australia) using the 2dF / HERMES instruments. I thought it would be nice to be tweeting life how observations are doing. And that is precisely what I’ve doing today.

On top of that, “this morning” I had an idea. As we always have some “free time” at the AAT after completing the “2dF first night setup” (1) I decided to observe a nice bright deep sky object and get a nice image with the AAT. I was starting to search for a suitable target, but then I though, why don’t I ask the public what do they want to observe?

After consulting with my supervisors and getting the OK to do this, I initiated a poll in both @astrotweeps and @AAOastro asking the public to vote for one of the four following astro objects:

  1. The elliptical galaxy NGC 2865.
  2. The planetary nebula NGC 4361.
  3. The warped and almost edge-on spiral galaxy ESO 510-G13.
  4. The barred spiral galaxy NGC 4027.

For around 8 hours people were casting their vote, we received 153 unique votes in total combining the @AAOastro and the @astrotweets accounts.

And the winner (2) was… the barred spiral galaxy NGC 4027!

But surprises didn’t end here. In the afternoon, when I was starting to prepare the instruments for the night (I’m conducting observations remotely from Sydney), I explained to astronomers and technicians at the AAT what we were doing. Rob Paterson, our afternoon technician, then told me “Do you know we already have the new CCD camera installed in 2dF and just waiting for testing it?

Let me explain why I was so excited when I heard this. For years the 2dF instrument has had an auxiliary camera, the FPI camera, that we use for properly positioning 2dF in the requested field. Rarely it has been used for science, as it is just a 516×516 pixels camera without filters. Occasionally I have also used it for getting some images of deep sky objects. But, as it has no filters, I had to get the color of the images elsewhere, usually taking archive data taken with other telescopes. But the new CCD camera in 2dF does have filters!

Rob phoned Steve Lee, the head of the Night Assistants at the AAT, and with Bob Dean the three of them managed to prepare CACTI (that is the name of the new camera) to have it ready for us.

Although there is still a lot to be done and tests to be conducted, the very first images I got this evening are quite promising. Here is the final result:

Spiral galaxy NGC 4027 located at around 75 million light years in Corvus (The Crow). This barred spiral galaxy, also identified as Arp 22, is identified as a peculiar galaxy by the extended arm, thought to be the result of a collision with another galaxy millions of years ago. This image is the “First Light” of the new CACTI camera in 2dF @ 3.9m Anglo-Australian Telescope. Color image using B (4 x 120 s, blue) + V (6 x 60 s, green) + R (6 x 60 s, red) filters. The data were taken on 11 May 2016 as part of an “outreach exercise” via social media. Click here to get a higher resolution image. Credit: Ángel R. López-Sánchez (AAO/MQ) & Steve Lee, Robert Paterson & Robert Dean (AAO). Night assistant at the AAT: Andre Phillips (AAO).

Note that this image, that actually is the “first light” of the CACTI camera, only combines 6 minutes in V and R and 8 minutes in B, that is, it is not deep at all. Furthermore not extra calibrations were taken (some flatfield images would have been nice). The deep image obtained by the 3.6m NTT telescope (ESO La Silla Observatory, Chile) provides many more details and resolution… but of course they were using the EFOSC instrument, which was specifically designed for deep imaging in optical filters. And the  image of NGC 4027 obtained by David Malin (AAO) using photographic plates at the AAT in 1982 is much more colorful.

But I still think it is a pretty result, particularly as this new image of NGC 4027 was obtained as a completely improvised “outreach exercise” using social media, in which 153 people voted for their favorite object to be observed at the 3.9m Anglo-Australian Telescope.

I really hope to repeat this exercise soon.

(1) A 2dF Plate must be configured with a scientific field, that is, allocating ~350 optical fibres to different objects in the sky. This takes ~ 20-30 minutes.

(2) Just to provide the details of the votes, see table below:

OBJECT    @Astrotweeps   @AAOastro       COMBINED

NGC 2865               5                  4                    9    ( 6% )

NGC 4361            36                   9                   45   (29%)

ESO 510-G13      36                  7                     43   (28%)

NGC 4027           36                20                    56   (37%)

TOTAL              113                 40                   153